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LEITER TO THE EDITOR 

Wetting dynamics: two simple models 
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lnstitut f i r  FestkBrperfonchung, Forschungszentrum Jiilich, PO9 1913, D-W 5170 Jiilieh, 
Federal Republic of Germany 

Received 2 January 1991 

Abstract. Two models of the wetting dynamics of a non-volatile liquid are introduced. 
Both models exhibit a transition between partial and complete wetting regimes. The first 
model, which can also be viewed as an inhomogeneous surface growth model, is studied 
in a two-dimensional capillary geometry. For complete wetting the profile of the fluid 
surface, apan from a precursor film, then assumes a stationary shape, which scales with 
the system size. A precursor film forms even at the transition, which one can locate 
analytically, although here it moves only as r X ,  where x = 112. This first model permits 
only fluctuations parallel to the wall over which the fluid spreads. Monte Carla simulations 
of the second model show that the inclusion of fluctuations perpendicular to the wall can 
lead to qualitatively new phenomena. 

Wetting phenomena involve three coexisting phases, e.g., a solid wall A, a liquid B 
and a gas C. Usually, one can ignore the exchange of particles between the solid wall 
and the fluid phases. One may then distinguish two different ensembles for the wetting 
dynamics: (i) partial chemical equilibrium between the liquid B and the gas C [l], 
and (ii) hindered or blocked chemical equilibrium between B and C which applies, 
e.g., to the spreading of a non-volatile liquid [2]. In this letter we consider case (ii) 
for the two geometries depicted in figure 1. 

In the first case (figure l (o) ) ,  a geometry employed in recent models to study the 
wetting dynamics [3,4], one has two parallel plates made of phase A. The upper plate 
ends at y = 0, while the lower one extends to infinity. The gap between the two plates 
is connected to a reservoir of liquid B. Initially the liquid-gas interface is planar and 
lies at y = 0, perpendicular to the plates. If the surface tension of the wall-gas interface 
is larger than that of the wall-liquid interface, p = uAc - U,, > 0, the liquid will flow 
out of the gap between the plates, the upper end of the liquid-gas interface remaining px. p+ 

-Y - Y  
Figure I. The two geometries employed in our simulations. ( a )  Shows the geometry used 
bath for our second model and in [3.4,6]. ( b )  Illustrates the capillary geometry used for 
our first model. 
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pinned at the edge of the upper plate. Two regimes can be distinguished: for 0 < p < U I 
ugc the fluid surface adopts a static profile making a non-zero contact angle with the 
lower plate, according to Young’s law [2] (partial wetting). For p > U the system 
exhibits complete wetting: the contact angle vanishes and the fluid spreads over the 
surface, the main body of the fluid preceded by a precursor film [3,5]. 

In the model introduced by Abraham et al it was found [3,4] that the profile behind 
the precursor film does not approach a stationary limit. One may ask whether this is 
generally true or a consequence of the geometry with one end of the fluid surface 
pinned. Therefore, we have studied an alternative model of wetting dynamics in the 
capillary geometry of figure l (b) .  (This arrangement has already been considered for 
partial wetting in [61.) In this geometry both plates extend to infinity. The gap between 
the plates is filled with gas, and initially the liquid-gas interface is oriented perpen- 
dicular to the plates. Our model also exhibits a transition between partial and complete 
wetting. However, in the case of complete wetting, if one excludes the precursor film, 
the fluid surface approaches a stationary limit. We see a precursor even at the transition, 
but its properties are different than for complete wetting. 

The models studied in [3,4,6] and the first model we shall discuss here all excluded 
fluctuations perpendicular to the walls. In the second part of this letter we shall show 
that these fluctuations can lead to the new phenomenon of a drop forming at the mouth 
of the reservoir in figure l (a ) .  

Consider the Langevin equation 

Jhldf  = u V 2 h + K + ~ ( S ( x ) + S ( X - L ) ) + 1 )  ( 1 )  

where ~ ( x ,  t )  is Gaussian white noise. This equation (with K =0) can be interpreted 
as the linear approximation of tbe dynamics of a fluid surface at y = h(x,  1 )  in a capillary 
with walls at x = 0 and x = L. This approximation is only good for small gradients 
of h. 

Alternatively, one can view (1) as a continuum approximation of the Edwards- 
Wilkinson (EW). model [7] of a surface growing via inhomogeneous deposition of 
particles [8]. On the square lattice this model is defined in the following way [9]. One 
has a one-dimensional substrate with sites x = 1 , .  . . , L with periodic boundary condi- 
tions, h(0, I)  = h(L,  t ) ,  for the integer surface height. Particles are added one by one 
on top of randomly chosen columns x =constant, where they only stick provided that 
none of the neighbouring columns is lower. Otherwise, they move to the lowest of the 
two neighbouring columns (or to one of these chosen at random, if these heights are 
equal) and stick there. Sticking means that the corresponding height increases by 1 .  
The deposition is made inhomogeneous by selecting site x = L with a probability 
( p +  l ) / (p+L)  whilst all other sites are only chosen with probability 1/ (  p +  L ) .  If one 
adds p + L  particles per unit time, the average deposition rate in (1) is K = 1 ,  whereas 
the extra deposition at the boundaries amounts to p = p / 2 .  As K can be transformed 
away in a comoving frame, this growth model can be used to investigate the meniscus 
of a fluid in a capillary. Again, the linear continuum approximation (1) is only good 
for small surface gradients. This is why the solutions of ( 1 )  always have a non-zero 
contact angle [6,8]. 

We have performed simulations of the EW model in order to look for a ‘wetting’ 
transition. The simulations were run on an 1BM 3090 for system sizes between L =  10 
and L =  100 and the results were averaged over many independent runs (typically of 
the order of a few hundred). A transition was found at 

p. = 2 L / (  L - 3 ) .  ( 2 )  
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For 0 < p < p ,  the system adopted a steady state with non-zero contact angles. For 
values of p considerably less than p c  the meniscus was parabolic as predicted by (1). 
However, for larger values of p the profile only remained parabolic towards the centre 
of the system where the slope is small. The steady-state profile advanced at a velocity 
p / L  (in the following, velocities are always given in the frame where K =O). The reason 
is that there is an extra deposition of p particles per unit time which makes all L sites 
move faster by the same amount. In the language of a fluid, this corresponds to the 
veruciiy UI L I L ~  capiriary nst: anu, as ii shouid be, ii is inverseiy proportionai io ihe 
width of the capillary or radius of curvature of the meniscus. 

For p > p c  a precursor, three sites wide, was observed at the edges of the capillary. 
The height of the precursorgrows with velocity up, and the rest of the system approaches 
a stationary profile which advances at a smaller velocity, U. The width of the precursor 
is a simple consequence of the deposition rule implemented. The extra deposition only 

added at site L -  1 or 1 rather than site L. Therefore, if a precursor forms it must be 
three sites wide. The precursor decouples from the rest of the system: as its height, 
relative to the height at the centre of the system increases, the probability of a fluctuation 
bringing h ( 2 )  or h ( L - 2 )  up to the precursor height becomes negligible. The precursor 
can then only grow when site L is chosen as the deposition site. Particles added at the 

!he 
velocity of the meniscus left behind. Hence the velocity of the precursor, up, and that 
of the rest of the profile, v, are 

... ...I_ _P.L. .._:.,._~ -;.. .-> 

U l l U l J  --^..-I "+ *. .,&.I I, r h..t ""L ... ,...Ll. La- ' . :L::h:L-::  o: ' . :L::h(:)  :!lese extra particks a:e 

sites of the prec.rsnr cantribl?!e to its \7e!oci!y, bet rE!her 

up= (P -2)/3 U = 2 / ( L -  3). ( 3 )  

At the transition one must have up= U = p J  L in agreement with our numerical 
rr,ru,rrg ,L,. 

As was also the case below p c ,  the stationary part of the profile has a scaling form 
for large L and t, h ( x ,  t )  = L f ( x / L ) + u t .  This is illustrated in figure 2, where the data 
for L=80 and L =  100 collapse. For L=40 there are still finite-size corrections visible. 
The stationary profile will be independent of p ,  as increasing p beyond pc  simply feeds 

c-.4:-- ,I\ 

1.2, I I I I 1 

X / L  
Figure 2. The scaled stationary part of the profile obtained in the complete wetting regime. 
The date are from simulations with p = 3  and system sizes L=40 (stars), L=80 (circles) 
and L =  LOO (crosses). 
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the extra particles into the precursor. We have checked that at pc  the stationary part 
of the profile agrees with the curve on figure 2. 

A precursor still develops when p = p c ,  but its height, relative to the height at  the 
centre of the system, now grows as f X  rather than with a constant velocity. It was 
necessary to wait very long times until the transients had died out sufficiently to be 
able to evaluate the asymptotic exponent. Figure 3 shows a double logarithmic plot, 
for system sizes L =  10 and L=40.  Fitting these data to a straight line we obtain 
,y=0.48*0.02. This suggests that ,y = 1/2, which is expected, if this effect is merely 
due to fluctuations in the number of particles deposited on the precursor relative to 
the average. 

I I 1 I I I I 
4 4.5 5 5.5 6 6 .5 7 

1.51 

b ( t )  
Figure 3. A double logarithmic plot of the time dependence of the precursor height, 
measured relative to the centre of the profile, at p = pc. The system sizes are L = 10 (crosses) 
where the error bars are smaller than the symbol size, and L=40 (circles). 

We shall now briefly discuss the second model of a spreading fluid. In order to 
investigate the possible consequences of including fluctuations both parallel and 
perpendicular to the walls, we have investigated a two-dimensional model in which 
the liquid-gas interface is represented by  a self-avoiding walk (SAW) [lo, 111. We have 
adopted the geometry of figure l (a) .  We commence with the fluid surface lying on the 
line y = 0, perpendicular to the walls, which are separated by L lattice constants. One 
end of the SAW is fixed at (x, y )  = (L, 0), as the fluid surface is pinned at the edge of 
the upper plate. The other end is constrained to sit on the lower wall, at (0, Y). 
Therefore Y corresponds to the distance up to which the fluid has spread. A Monte 
Carlo simulation was performed, weighting the different SAW (surface) configurations 
by Boltzmann factors with energy 

H = UN - p Y  - (U - p ) M .  (4) 

The length of the surface, or number of bonds N contained in the SAW, may vary 
between L and infinity. M is the number of holes in the precursor film, corresponding 
to the number of bonds of the SAW that lie directly on the lower wall. It can be ignored 
in the following, as it has no bearing on the phenomena we wish to discuss. 

= p/ T, where T 
is the temperature. 6 was always large enough to prevent the SAW proliferating to fill 

Simulations were performed for various values of 6 = U/ T and 
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out the lattice, i.e. we are not close to the critical point of liquid-gas coexistence [ I l l .  
A transition was found when 6 = @. If 6 > c, one observes partial wetting. On average 
the SAW adopts a stationary state with a non-zero contact angle with the wall. If @> e, 
complete wetting occurs and the displacement Y grows linearly with time. If 6 is 
rather large, say 6 = 5 ,  then the profile of the fluid essentially looks similar to that 
found in Abraham's model [3,4], at least for times accessible to our computer simula- 
tion. However, there is no longer a precursor of constant thickness, due to the 

a thin 'precursor'-like structure disappear, and a drop of fluid develops at the mouth 
of the reservoir. The spreading potential continues to drive the end of the SAW to larger 
displacements Y, and simultaneously the gain in entropy makes the fluid surface bulge 
out away from the wall. An example of this phenomenon is shown in figure 4 for L = 2, 
6 = 1.5, L = 1.65. To observe this within easily accessible times we have taken L and 

although one would have to go to much longer times to be able to detect it. 

fruc;uaiioiis preaeiii in the model. As the surface iension (T is decreased, aii traces Uf 

z t.. I.- ..~-, .̂.."I1 *I.- ""-" -Ln"-...-"-- "L^..1-1 c^- I"-""- r -- z " L U  uzi " G X J  0..1(111. L.uwr"r . ,  L l l c i  Jnlllr p , G n L U L A , G , , u , ,  U l l U U l Y  UCCU, ,U, 1aLB" b U1 Y, 

7 ,  I I 

H 

Y 
Figure 4. The full curves show the profile of the fluid surface at three equally spaced times 
for L = 2 , s  = 1.5, G = 1.65. The profile for the longest time is averaged over 3900 runs and 
the profiles for the two earlier times are averaged over I500 runs. Also shown are the fits 
~ = 1 . 0 8 ( y + 3 . 4 ) ~ ~ ~ ~  (dotted a w e )  and ~ = 1 . 4 4 ( 2 7 8 - y ) ~ "  (broken curve). 

T h e  shape of the drop is produced by the entropic repulsion of the fluid surface 
from the wall. One can therefore postulate that the shape should follow simple scaling 

surface up to a distance 5 -  t"' with z = 2. Their amplitude increases as 5' with 5 = 1/2 
in two dimensions. As the surface is pinned at y = 0, only fluctuations up to wavelength 
y contribute to the average surface displacement x ( y )  at a distance y from this point. 
Hence one should get, for 1 cc y<< t"', 

%;=;S. :: is !Gown [:j tha: -i:cin B time : tLe;;.;.a! Buc:uations devebp an B p!anar 

x ( y )  -y ' .  ( 5 )  

At the opposite end of the drop, a distance y = ut - y  back from its foot, which 
propagates at velocity U, the surface fluctuations have had a time ?/U to develop. 
Hence, one expects that for tl/'cc ycc ut the shape of the drop scales as 

( 6 )  x ( y )  - (ut - y y x .  
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We have fitted our data to expressions (5) and (6). adjusting the exponent, the 
proportionality factor and a shift of the coordinate y. The best fits have been super- 
imposed on the date in figure 4 and seem to be consistent with the simple scaling 
ideas, although, especially in the case of (S), much larger systems would be needed 
to provide conclusive evidence. 

In three dimensions this phenomenon will be less pronounced, as the surface 
fluctuations increase only logarithmically with distance. Hence ( 5 )  and (6) will be 
replaced by logarithmic dependencies. 

We wish to thank D Abraham, R Lipowsky, B Chopard, K Kaski, H Herrmann and 
P Devillard for stimulating discussions. This work was supported by the Deutsche 
Forschungsgemeinschaft within SFB 341. JC acknowledges the support of the Royal 
Society. 
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